Abstract

Zirconia and its derivatives have been receiving increased levels of attention with regard to their potential application in bone tissue engineering. These materials are of particular interest because of their excellent characteristics, such as superior biological and mechanical properties. In this study, yttria-stabilized tetragonal zirconia (YTZ)-reinforced nanohydroxyapatite/polyamide 66 (nHA/PA66) bone screws were prepared. The biocompatibility and bioactivity of nHA/PA66/YTZ were evaluated in vitro using MC3T3-E1 cells. Biocompatibility and bioactivity experiments (cell counting kit-8 tests, cell immunofluorescence analysis, and polymerase chain reaction) showed that nHA/PA66/YTZ could facilitate the biological functions of MC3T3-E1 cells. The attachment, proliferation, spreading, and expression of genes associated with osteogenesis (collagen 1, osteopontin, and osteocalcin) in cells cultured with the nHA/PA66/YTZ composite were all superior compared with the control groups (P < 0.05). In addition, nHA/PA66/YTZ bone screws were implanted into the femoral condyles of rabbits, and titanium screws were employed as a control group; postoperative histology and blood analysis revealed no obvious damage to the liver, kidneys, or any other major organs in either of the experimental groups. Moreover, nHA/PA66/YTZ screws resulted in significantly better bone-implant contact interfaces and enhanced formation of trabecular bone (P < 0.05); these characteristics were markedly better than those in the group that received titanium screws. These observations indicate that YTZ-reinforced nHA/PA66 composites have significant potential for applications in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call