Abstract
ABSTRACT Triclosan (TCS) is an antibacterial and antifungal agent used in many consumer products and exhibits a chemical structure similar to non-steroidal estrogen, which is known to induce endocrine disruption. Triclosan has been found in human plasma, urine, and breast milk, and the safety of TCS-containing products has been disputed. Although studies attempted to determine the estrogenic activity of TCS, no clear results have emerged. The aim of the present study was to examine estrogenic activity of TCS using an in vitro E-screen assay and an in vivo uterotrophic assay. The in vitro E-screen assay demonstrated that TCS significantly enhanced proliferation of MCF-7 breast cancer cells, although not in a concentration-dependent manner. The in vivo uterotrophic results showed no significant change in the weight of uteri obtained from TCS-administered Sprague-Dawley rats. Further, to understand the estrogenic activity attributed to TCS at the molecular level, gene-expression profiling of uterus samples was performed from both TCS- or estrogen-treated rats and the genes and cellular processes affected by TCS or estrogen were compared. Data demonstrated that both the genes and cellular processes affected by TCS or estrogen were significantly similar, indicating the possibility that TCS-mediated estrogenic activity occurred at the global transcriptome level. In conclusion, in vitro and gene-profiling results suggested that TCS exhibited estrogenic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Toxicology and Environmental Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.