Abstract

BackgroundAlveolar echinococcosis (AE) is a chronic zoonosis caused by the larval form of Echinococcus multilocularis (E. multilocularis). Current chemotherapy against AE has relied on albendazole and mebendazole, which only exhibit parasitostatic and not parasiticidal efficacy. Therefore, novel compounds for the treatment of this disease are needed.MethodsPhosphoglucose isomerase (PGI) assays were used for compound screening of seven neonicotinoids. The anti-parasitic effects of thiacloprid were then evaluated on E. multilocularis metacestode vesicles, germinal cells and protoscoleces in vitro. Human foreskin fibroblasts (HFF) and Reuber rat hepatoma (RH) cells were used to assess cytotoxicity. Glucose consumption in E. multilocularis protoscoleces and germinal cells was assessed by measuring uptake of 2-deoxyglucose (2-DG). Molecular docking was used to evaluate the potential binding sites of thiacloprid to acetylcholine receptors. In vivo efficacy of thiacloprid was evaluated in mice by secondary infection with E. multilocularis. In addition, ELISA and flow cytometry were used to evaluate the effects of cytokines and T lymphocyte subsets after thiacloprid treatment. Furthermore, collagen deposition and degradation in the host lesion microenvironment were evaluated.ResultsWe found that thiacloprid is the most promising compound, with an IC50 of 4.54 ± 1.10 μM and 2.89 ± 0.34 μM, respectively, against in vitro-cultured E. multilocularis metacestodes and germinal cells. Thiacloprid was less toxic for HFF and RH mammalian cell lines than for metacestodes. In addition, thiacloprid inhibited the acetylcholinesterase activity in protoscoleces, metacestodes and germinal cells. Thiacloprid inhibited glucose consumption by protoscoleces and germinal cells. Subsequently, transmission electron microscopy revealed that treatment with thiacloprid damaged the germinal layer. In vivo, metacestode weight was significantly reduced following oral administration of thiacloprid at 15 and 30 mg/kg. The level of CD4+ T lymphocytes in metacestodes and spleen increased after thiacloprid treatment. Anti-echinococcosis-related cytokines (IL-2, IL-4, IL-10) were significantly increased. Furthermore, thiacloprid inhibited the expression of matrix metalloproteinases (MMPs 1, 3, 9, 13) and promoted collagen deposition in the host lesion microenvironment.ConclusionsThe results demonstrated that thiacloprid had parasiticidal activity against E. multilocularis in vitro and in vivo, and could be used as a novel lead compound for the treatment of AE.Graphical abstract

Highlights

  • Alveolar echinococcosis (AE) is a chronic zoonosis caused by the larval form of Echinococcus multilocularis (E. multilocularis)

  • Thiacloprid inhibits the activity of matrix metalloproteinases (MMPs) Matrix metalloproteinase (MMP) are the main factors leading to collagen degradation; we further studied the effect of thiacloprid on MMP production

  • We observed by transmission electron microscopy (TEM) that thiacloprid caused the germinal layer structure to be destroyed or the germinal layer separated from tegument

Read more

Summary

Introduction

Alveolar echinococcosis (AE) is a chronic zoonosis caused by the larval form of Echinococcus multilocularis (E. multilocularis). Alveolar echinococcosis (AE) is a rare zoonotic parasitic disease caused by the metacestode stage of Echinococcus multilocularis, which presents unclearly delimited foci (alveococcus) located in the liver (in 99% of cases). The life cycle of echinococcus involves two mammalian hosts, usually including a definitive host of canids or foxes and an intermediate host of small rodents [2]. Humans are aberrant hosts and become infected by orally ingesting E. multilocularis eggs from the environment. Oncospheres pass through the portal and reach the liver, where they usually settle and develop as larvae (metacestodes) [3]. The interaction between the parasite and the host leads to the formation of infectious granuloma reaction [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call