Abstract

Affinity is an important property of therapeutic antibodies, so improving affinity is critical to the biological activity and clinical efficacy. An anti–HIF–1α nanobody, VHH212, was screened via a native ribosome display library with a 26.6 nM of KD value was used as the parent. In this paper, a Venn-intersection of multi-algorithms screening (VIMAS) strategy for computer-aided binding affinity prediction was designed. Homology modeling and protein docking methods were used to substitute the need for a crystal structure. Finally, a mutant with a 17.5-fold enhancement in binding affinity (1.52 nM) was obtained by using the VIMAS strategy. Furthermore, the biological activity of mutants was verified at the cellular level. Targeting HIF-1α can sensitize PDAC (pancreatic ductal adenocarcinoma) tumors to gemcitabine, which is a potential co-treatment method for pancreatic cancer patients. Our results showed that the cytotoxicity of gemcitabine on pancreatic cancer cell lines increased with the enhanced-affinity of an intrabody under combined treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.