Abstract

The emergence of disinfectant-resistant microorganisms poses a significant threat to public health. These resilient pathogens can survive and thrive in hospital settings despite routine disinfection practices, leading to persistent infections and the potential for outbreaks. In this study, we investigated the impact of 11 different commercial sanitizers at various concentrations and exposure times on biofilms consisting of clinical and nosocomial environmental isolates of Candida parapsilosis and Staphylococcus aureus. Among the sanitizers tested, 0.5% and 2.0% chlorhexidine (CLX), 10% polyvinyl pyrrolidone (PVP-I), a disinfectant based on quaternary ammonium compound (QAC), 2% glutaraldehyde, and 0.55% orthophthalaldehyde (OPA) demonstrated efficacy against both C. parapsilosis and S. aureus in monospecies and mixed biofilms. Analysis showed that 0.5% CLX and 10% PVP-I had fungicidal and bactericidal activity against all biofilms. However, the sanitizer based on QAC and 0.55% OPA proved to be bacteriostatic and fungicidal against both monospecies and mixed biofilms. In mixed biofilms, despite the last four sanitizers exerting fungicidal action, the reduction of fungal cells was approximately 4 log10 CFU/mL compared to monospecies biofilms, showing that the interaction provided more resistance of the yeast to the sanitizer. Formation of mixed biofilms in hospital settings can create an ecological niche that enhances the survival of pathogens against routine sanitization procedures. Therefore, effective sanitization practices, including regular cleaning with effective sanitizers, should be implemented to prevent C. parapsilosis/S. aureus biofilm formation in healthcare settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call