Abstract
Lithium (Li) metal is an attractive anode material with high capacity (3860 mAh g−1) and low potential (−3.04 V vs. standard hydrogen electrode) that shows highly promising for applications requiring high energy density. However, the low electrochemical potential of Li metal makes it extremely reactive and inevitably forming a native oxidized layer in the ambient environment and repeatedly being consumed when exposed to liquid electrolytes. It is therefore beneficial to replace the poorly controlled native passivation layer with a tailored artificial SEI to improve interface management between Li and electrolyte and enhance the stability of Li metal battery. Here, we use an integrated glovebox-atomic layer deposition (ALD)- X-ray photoelectron spectroscopy (XPS) setup to in-situ investigating the pristine Li surface and the surface composition after Ar, H2, O2, N2 and NH3 plasma treatment processes. We find that the pristine Li foil is naturally being covered with a native oxidized layer, which is mainly composed of LiOH, Li2O and Li2CO3. These investigated plasmas can efficiently remove the oxidized layer from the Li metal surface, in which metallic Li surface is obtained after Ar or H2 plasma treatments, where Ar plasma is more efficient. While O2 plasma treatment produces a Li2O layer, and N2 or NH3 plasma treatment leads to a Li3N (including a certain amount of LiON) layer on the Li surface. When employing the representative metallic Li (by Ar plasma treatment), Li2O layer coated Li (by O2 plasma treatment) and Li3N layer coated Li (by N2 plasma treatment) foils as electrodes in symmetric Li metal batteries, the Li3N coated Li electrode exhibits much higher stability than that of metallic and Li2O layer coated Li foils. Improved electrochemical performance has also been achieved in LiMn2O4 (LMO)||Li full cells using Li anode with Li3N protective coating layer. Our work reveals the detailed process of surface engineering of Li metal anodes with plasma treatments by in vacuo XPS, which may also be extended to other gas-treatment or plasma-treatment for stabilization of high energy density Li metal anodes and other metal-based anodes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.