Abstract

Recent reports have indicated a role of cell-to-cell interactions during gonadal development and functions. Numerous reports indicate that fetal hormonal disruption induces abnormalities in the developing reproductive system and, therefore, may interfere with reproductive functions later in adult life. Hence, this study investigated the effect of androgen deficiency during late prenatal periods on the gap junction-associated connexin 43 (Cx43) and the adherens junction-associated β-catenin expression in the fetal porcine gonads. Thus, pregnant gilts were injected with anti-androgen flutamide (for 7 d, 50 mg/kg BW per day) or corn oil (control groups) starting at 83 (GD90) or 101 (GD108) gestational day. On GD90 and GD108 the fetuses were excised and fetal gonads were obtained. To assess Cx43 and β-catenin expression real-time PCR and immunohistochemistry were performed. In fetal testes, Cx43 was localized between Leydig cells, whereas β-catenin was observed mainly within the seminiferous tubules. In fetal ovaries, Cx43 was detected between interstitial cells and between granulosa cells of forming follicles, whereas β-catenin was found within egg nests, in oocytes' membrane, and in granulosa cells of forming follicles. Immunohistochemistry showed decreased Cx43 and β-catenin expression in fetal gonads from flutamide-treated pigs compared with respective controls. However, the ovaries from animals treated with flutamide on GD108 showed increased Cx43 expression. The changes of Cx43 and β-catenin expression after prenatal flutamide treatment were confirmed at the mRNA level. These findings suggest that androgen deficiency during late gestation may lead to disturbed intercellular interactions in fetal porcine testes affecting testicular functions, as well as impaired follicular formation in fetal ovaries. Our results further signify the role of androgens in the regulation of cell-to-cell interactions within fetal porcine gonads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.