Abstract

AbstractTo increase the long term stability and performance of solid oxide fuel cell (SOFC) materials, it is important to understand the main degradation processes in their functional layers. In this work, the interface between electrolyte and anode material was investigated by in situ X‐ray diffraction (XRD) stress and phase analysis. It has been found that the determining process for the initial degradation of SOFC is the reduction of the anode material with hydrogen. During this process a tensile strength of 600–700 MPa is measured. These stresses are induced in the electrolyte material and produce crack networks. The reduction from nickel oxide to pure nickel was monitored by in situ phase analysis. This reaction induces tensile stress at the interface between electrolyte and anode. The stress produced in the electrolyte material was also confirmed by the observation of crack networks detected using scanning electron microscopy (SEM). Finally, the reducing process was optimized using different process gases, decreasing the destructive tensile stress level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call