Abstract

The activity of deep-focus earthquakes, which increases with depth from ~400 km to a peak at ~600 km, is enigmatic, because conventional brittle failure is unlikely to occur at elevated pressures. It becomes increasingly clear that pressure-induced phase transitions of olivine are responsible for the occurrence of the earthquakes, based on deformation experiments under pressure. However, many such experiments were made using analogue materials and those on mantle olivine are required to verify the hypotheses developed by these studies. Here we report the results of deformation experiments on (Mg,Fe)2SiO4 olivine at 11−17 GPa and 860−1350 K, equivalent to the conditions of the slabs subducted into the mantle transition zone. We find that throughgoing faulting occurs only at very limited temperatures of 1100−1160 K, accompanied by intense acoustic emissions at the onset of rupture. Fault sliding aided by shear heating occurs along a weak layer, which is formed via linking-up of lenticular packets filled with nanocrystalline olivine and wadsleyite. Our study suggests that transformational faulting occurs on the isothermal surface of the metastable olivine wedge in slabs, leading to deep-focus earthquakes in limited regions and depth range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.