Abstract

Suicide gene therapy represents a new therapeutic approach to the treatment of patients with otherwise incurable malignant brain tumours. This strategy involves the introduction of a gene that renders the tumour cell susceptible to an otherwise nontoxic prodrug. The most often used genetic prodrug activation system is the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) paradigm. An important aspect of this system is the ‘bystander effect’, the extension of cytotoxic effects to untransduced cells. For gene delivery, retroviral, adenoviral vectors and HSV-1 mutants have been used. Clinical studies have revealed that the HSV-tk/GCV approach is safe, but also that responses are observed only in very small brain tumours, indicating insufficient vector distribution and very low transduction efficiency with replication-deficient vector systems. To improve treatment efficacy, the use of replication-competent oncolytic vectors in combination with new or improved prodrug-suicide gene systems as a part of a multimodal approach is warranted. In the context of replication-competent vectors, suicide genes might also be used as fail-safe genes in the case of runaway infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.