Abstract

For gene therapy of hepatocellular carcinoma (HCC), the Escherichia coli purine nucleoside phosphorylase (PNP)/fludarabine suicide gene system may be more useful than the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system as a result of a stronger bystander effect. To analyze the molecular mechanisms involved in PNP/fludarabine-mediated cell death in human HCC cells in comparison with HSV-tk/GCV, we transduced human HCC cells of the cell lines, HepG2 and Hep3B, with PNP or HSV-tk using adenoviral vectors, followed by prodrug incubation. Both systems predominantly induced apoptosis in HepG2 and Hep3B cells. PNP/fludarabine induced strong p53 accumulation and a more rapid onset of apoptosis in p53-positive HepG2 cells as compared with p53-negative Hep3B cells, but efficiency of tumor cell killing was similar in both cell lines. In contrast, HSV-tk/GCV-induced apoptosis was reduced in p53-negative Hep3B cells as compared with p53-positive HepG2 cells. HSV-tk/GCV, but not PNP/fludarabine, caused up-regulation of Fas in p53-positive HepG2 cells and of Fas ligand (FasL) in both HCC cell lines. These results demonstrate cell line-specific differences in response to treatment with PNP/fludarabine and HSV-tk/GCV, respectively, and indicate that PNP/fludarabine may be superior to HSV-tk/GCV for the treatment of human HCC because of its independence from p53 and the Fas/FasL system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call