Abstract

Organic room temperature phosphorescence (RTP) systems are rarely reported for vapor phase sensing due to the contradiction between vapor permeability and phosphorescence ability. Till now, almost all reported works are based on ″turn-off″ mode RTP detection by destroying the compact-packaging oxygen-free environment. ″Turn-on″ mode RTP detection owns additional anti-interference capability due to a lower initial RTP background signal, while its realization is even harder. In this research, in situ phosphorescence ″turn-on″ sensing was realized for methamphetamine (MPEA) vapor detection. Based on the formation of aromatic phenolic aldehyde-secondary amine ion pairs with air-stable RTP performance, the fluorescent tri-formyl phenol (TFP) film was converted into a stable RTP state after being exposed to the MPEA vapor, as supported by nuclear magnetic resonance (NMR) and mass spectrometry together with theoretical calculations. The red-shifted absorption and emission, enhanced emission intensity, and 49.7 μs phosphorescence lifetime allowed multiple mode MPEA vapor sensing from chromaticity to fluorescence to phosphorescence. The lifetime mode detection limit reached 0.4 ppt, 5 orders of magnitude lower than the intensity mode detection limit of 20.3 ppb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.