Abstract
The thermal conductivity measurement of metal-organic frameworks (MOFs), which plays an important role in thermal management of MOF-based gas separation, storage, and thermal energy conversion (e.g., adsorption heat pumps), has been a challenging task for decades. However, the direct thermal conductivity measurement of a single-crystal MOF is currently limited by their small crystal sizes, since no sophisticated approach has ever been reported. In this study, the Raman-resistance temperature detectors (Raman-RTDs) method was developed for in situ measuring of the thermal conductivity of single-crystal ZIF-8, whose system error resulting from the thermal contact resistance between sample and RTDs can be eliminated. According to the dependence of thermal resistance of MOF crystals on the laser spot location, the thermal conductivities of polycrystalline and single-crystal ZIF-8 were derived to be 0.21 ± 0.03 and 0.64 ± 0.09 W/(m·K), respectively. The proposed in situ thermal conductivity measurement method may be further extended to other types of microscale particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.