Abstract

Through in situ transmission electron microscopy (TEM) observation, we report the behaviors of phosphorus (P)-doped silicon nanowires (SiNWs) during electrochemical lithiation/delithiation cycling. Upon lithiation, lithium (Li) insertion causes volume expansion and formation of the crystalline Li15Si4 phase in the P-doped SiNWs. During delithiation, vacancies induced by Li extraction aggregate gradually, leading to the generation of nanopores. The as-formed nanopores can get annihilated with Li reinsertion during the following electrochemical cycle. As demonstrated by our phase-field simulations, such first-time-observed reversible nanopore formation can be attributed to the promoted lithiation/delithiation rate by the P dopant in the SiNWs. Our phase-field simulations further reveal that the delithiation-induced nanoporous structures can be controlled by tuning the electrochemical reaction rate in the SiNWs. The findings of this study shed light on the rational design of high-power performance Si-based anodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call