Abstract

Layered transition metal dichalcogenides with vertically aligned morphology show great potentials in energy conversion and storage due to the high density of exposed edge sites which have enhanced electrochemical reactivity. In this letter, through in situ heating investigations in a transmission electron microscope, the controlled growth of vertically aligned WS2 with high-temperature stability has been achieved through the thermolysis of solid precursor K2WS4. It is found that the growth of vertically aligned WS2 layers employs hybrid growth modes, in which the growth of new WS2 slab is initiated at old ones from either the middle part or edge part. These vertically aligned WS2 layers show great stability at high temperature of 900 °C. Our detailed investigations and theoretical calculations indicate that potassium element in the solid precursor plays a critical role in the growth and evolution of vertically aligned WS2. This method is also applicable to the controlled growth of vertically aligned MoS2 with high-temperature stability through the decomposition of K2MoS4. These findings pave a way for tailored design and fabrication of materials with optimized structure to achieve their superior properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.