Abstract

Advancements in renewable energy conversion can be significantly propelled by optimizing the performance of transition-metal-based electrodes. In this study, we introduce an innovative, in situ tellurization strategy to synthesize novel, flower-like hierarchical structures of nickel ditelluride/cobalt ditelluride (NiTe2/CoTe2) on a nickel foam substrate (labeled as NF/FNCT), making them promising candidates for electrodes in hybrid supercapacitors. Initially, we utilized a hydrothermal method to create flower-like NiCo-layered double hydroxide (NiCo-LDH) nanoarrays on nickel foam (NF/FNCLDH). This process was followed by the tellurization of these nanoarrays, which yields the NiTe₂/CoTe₂ nanostructures. The strategic assembly of active materials on a conductive substrate effectively obviates the need for inert, slow-conductive binders, thereby facilitating redox chemistry. Capitalizing on the synergistic effects of the conductive tellurium and hierarchical flower-like nanomorphology, the NF/FNCT showcases expedited electron/ion transport, enhanced efficiency, and exceptional electrochemical performance. The NF/FNCT electrode discloses an impressive capacity of 1388.9 (±3) C/g, superior rate capability (83.45 % capacity retention at 30 A/g), and remarkable cycling durability of 96.67 %. Furthermore, when integrated with activated carbon (AC), the resultant hybrid supercapacitor delivers a desirable energy density of 58.85 Wh kg−1 at a power density of 806.85 W kg−1, demonstrating commendable rate capability and cycling durability. This investigation opens new avenues for the synthesis of materials for hybrid supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call