Abstract
Zr-containing silica residue (ZSR) is an industrial by-product of ZrOCl2 production obtained through an alkali fusion process using zircon sand. In this study, low-cost and efficient Zr-doped mesoporous silica adsorption materials (Zr-MCM-41 and Zr-SBA-15) were prepared in one step via the hydrothermal synthesis method using ZSR as the silicon source for the removal of methylene blue (MB) from dye-contaminated wastewater. The samples were characterized using X-ray fluorescence (XRF) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry (TG), and N2 adsorption–desorption measurements. The findings indicate that the synthesized Zr-MCM-41 and Zr-SBA-15 possess highly ordered mesoscopic structures with high specific surface areas of 910 and 846 m2/g, large pore volumes of 1.098 and 1.154 cm3/g, and average pore diameters of 4.18 and 5.35 nm, respectively. The results of the adsorption experiments show that the adsorbent has better adsorption properties under alkaline conditions. The adsorption process obeys the pseudo-quadratic kinetic model and the Freundlich adsorption isotherm model, indicating the coexistence of physical and chemisorption processes. The maximum adsorption capacities of Zr-MCM-41 and Zr-SBA-15 are 618.43 and 516.58 mg/g, respectively, as calculated by the Langmuir model (pH = 9, temperature of 25 °C). Compared with mesoporous silica prepared with sodium silicate as the silicon source, Zr-MCM-41 and Zr-SBA-15 have different structural properties and better adsorption properties due to Zr doping. These findings indicate that ZSR is the preferred silicon source for preparing mesoporous silica, and the mesoporous silica prepared using Zr silicon slag is a promising adsorbent and has great application potential in wastewater treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have