Abstract
We report the controllable synthesis of zinc sulfide (ZnS) nanocrystals (NCs)/polymer transparent nanocomposite hybrids in situ based on the catalytic chain transfer polymerization (CCTP) technique. Firstly, a polymeric ligand PMAA [PMAA = poly(acrylic acid)] with controllable low-molecular-weight and a terminal double bond was synthesized through CCTP. Secondly, with the use of this versatile polymeric ligand containing a large number of anchors as the stabilizer, the ZnS NCs were fabricated. Finally, the surface polymeric ligands containing terminal double bonds were copolymerized with methyl methacrylate monomer to form NCs–polymer hybrids through free radical polymerization. The properties of as-prepared ZnS NCs and their nanocomposite hybrids were thoroughly investigated by Fourier transform Raman spectra, Fourier transform infrared spectrum, transmission electron microscope, ultraviolet–visible, photoluminescence, and thermogravimetric analyses measurements. The spectroscopic studies reveal that ZnS–polymer nanocomposite hybrids have good optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.