Abstract

Nickel oxide is a p–type transition metal oxide with excellent electrochemical performance, which is widely used in the application of supercapacitors. We introduce an approach of femtosecond laser ablation combined with electrochemical anodization for NiO nanostructures grow in situ on nickel sheet for supercapacitors electrodes. By controlling the processing conditions of femtosecond laser, various patterns covered the surface of nickel sheet, which promoted uniform NiO growth in situ on nickel sheet. Specific capacitance of the supercapacitor electrode fabricated using femtosecond laser pretreatment was superior to that of the NiO/Ni electrode prepared by electrochemical anodization alone at the current density of 1 mA cm−2. In addition, the capacitance retention of the NiO/Ni electrode for 1500 cycles was approximately 100%, and this electrode exhibited excellent conductivity according to electrochemical impedance spectroscopy measurements. According to these results, femtosecond laser enhanced electrochemical anodization was a promising approach for the fabrication of supercapacitors electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.