Abstract

Cu nanoclusters (NCs) have attracted a lot of attention due to the excellent properties. However, the low luminescence and poor stability limited the Cu NC-based sensing research. In this work, Cu NCs were in situ synthesized on CeO2 nanorods. On the one hand, the aggregated induced electrochemiluminescence (AIECL) of Cu NCs has been observed on the CeO2 nanorods. On the other hand, the substrate of CeO2 nanorods acted as catalysis, which reduced the excitation potential and further enhanced the ECL signal of Cu NCs. It was noticed that CeO2 nanorods also greatly improved the stability of Cu NCs. The resulted high ECL signals of Cu NCs can be kept constant for several days. Furthermore, MXene nanosheets/Au NPs has been employed as electrode modification materials to construct the sensing platform to detect miRNA-585–3p in triple negative breast cancer tissues. Au NPs@MXene nanosheets not only enlarged the specific interface area of the electrodes and the number of reaction sites, but also modulated electron transfer to amplify the ECL signal of Cu NCs. The biosensor had a low detection limit (0.9 fM) and a wide linear range (1 fM to 1 μM) for the detection of miRNA-585–3p in the clinic tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.