Abstract

Cu nanoclusters (NCs) have attracted a lot of attention due to the excellent properties. However, the low luminescence and poor stability limited the Cu NC-based sensing research. In this work, Cu NCs were in situ synthesized on CeO2 nanorods. On the one hand, the aggregated induced electrochemiluminescence (AIECL) of Cu NCs has been observed on the CeO2 nanorods. On the other hand, the substrate of CeO2 nanorods acted as catalysis, which reduced the excitation potential and further enhanced the ECL signal of Cu NCs. It was noticed that CeO2 nanorods also greatly improved the stability of Cu NCs. The resulted high ECL signals of Cu NCs can be kept constant for several days. Furthermore, MXene nanosheets/Au NPs has been employed as electrode modification materials to construct the sensing platform to detect miRNA-585–3p in triple negative breast cancer tissues. Au NPs@MXene nanosheets not only enlarged the specific interface area of the electrodes and the number of reaction sites, but also modulated electron transfer to amplify the ECL signal of Cu NCs. The biosensor had a low detection limit (0.9 fM) and a wide linear range (1 fM to 1 μM) for the detection of miRNA-585–3p in the clinic tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call