Abstract

AbstractCordierite‐mullite composite ceramic was synthesized in situ by semidry pressing and pressureless sintering from andalusite, kaolin, γ‐Al2O3, talc, potassium feldspar, and albite in air. The effects of composition and sintering temperature on the density, bending strength, thermal shock stability, crystal phases, and microstructure of the specimens were studied. The results show that specimen B2 (the theoretical content of cordierite was 20 wt%) has excellent performance, that is, a bending strength of 104.59 MPa, 30 cycles of thermal shock resistance without cracking, and a loss rate of 13.12%. X‐ray diffractometer (XRD) analysis and scanning electron microscope (SEM) micrographs showed that spherical cordierite crystals were grown on the surface of the mullite, therefore, the specimen possessed a superior bending strength and thermal shock resistance, where a great number of granules combined to restrain crack initiation as well as propagation over time during the thermal shock test. The thermal conductivity of specimen B2 was determined to be 3.83 W/(m·K) (36°C), and the sensible heat storage density was 1136 kJ/kg, with the temperature difference (ΔT) ranging from 0 to 800°C. Consequently, the cordierite‐mullite composite is a potentially applicable material for solar thermal storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.