Abstract
Severe plastic deformation (SPD) is a process to significantly improve the mechanical properties of materials by grain refinement. For forming at room temperature (RT), higher strengths can thus be achieved; for increased temperatures (HT), greater elongations can be achieved. This great potential has been chiefly applied only on laboratory scale due to a lack of industrial process design. Equal-channel angular pressing (ECAP) offers the possibility to integrate these advantages in industrial processes. This paper investigates a modified ECAP process for aluminum AA5083 sheet metal. Two passes of ECAP for sheet metal and an additional heat treatment were used. To study the material deformation on a micro-scale, in-situ synchrotron measurements at DESY (Hamburg) were performed to analyze the evolution of lattice strains and dislocation densities during tensile testing. The mechanical properties of the ECAP-processed sheet material reveal an increase in yield strength and a decrease in elongation at RT. Higher strains can be measured for the processed material at elevated test temperatures. In-situ diffraction results show a changed behavior of the ECAP sheet material compared to the reference material for both temperature regimes. These changes are based on the increased defect density in the material, which leads to increased strength at RT. At HT, dynamic recrystallization occurs during tensile testing, and the prevailing deformation mechanisms reconfigure. Electron backscatter diffraction (EBSD) and micrographs are used to interpret and supplement the observations. The findings provide the basis for the in-depth understanding of the deformation behavior of the material and help to apply the ECAP process on an industrial scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.