Abstract

The thermal decomposition of Ni3N thin films, deposited by chemical vapor deposition on SrTiO3 (001) and Si (100) substrates, has been studied by in situ x-ray diffraction, as well as temperature-programed controlled gas emission in both inert and hydrogen atmospheres. The decomposition at inert atmosphere conditions starts at the film/substrate interface, which results in a high degree of ordering in the formed nickel film. In the H2 atmosphere, the initial film ordering is less pronounced and the decomposition occurs from the film surface and downward. This means that by choosing the annealing atmosphere, inert or hydrogen, the formation of the Ni film can be localized to either the original nitride/substrate interface or to the surface of the nitride. The annealed films show a cube-on-cube growth with respect to the SrTiO3 (001) substrate. The film morphology after the annealing experiments resembles the one of the as-deposited films. The lowest resistivity value is measured for the films annealed in the H2 atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.