Abstract

Ramified aggregates are formed in many kinetically-limited growth processes such as in sooting flames. The structures are disordered and present a challenge to quantification. The topology of such nanomaterials is important in understanding their formation and properties. Recently, a method has been developed for the quantification of branching in aggregates using small-angle scattering. The method allows for determination of the average number of branches, branch length, short circuit path through an aggregate, aggregate total mass, aggregate polydispersity, primary particle coordination number, Sauter mean diameter, primary particle polydispersity, particle size distribution, and surface to volume ratio. In this report the new topological method is applied to in situ measurements previously published from a flame aerosol as a function of height above the burner. The topological evolution of primary and fractal structures is observed. This facilitates the understanding of growth dynamics and the structural rearrangements that occur during flame synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.