Abstract

Experimental elucidation of the decoupling of electron and proton transfer at a molecular level is essential for thoroughly understanding the kinetics of heterogeneous (photo)electrochemical proton-coupled electron transfer water oxidation. Here we illustrate the electron-transfer intermediates of positively charged surface oxygenated species on Au (Au-OH+) and their correlations with the rate of water oxidation by in situ microphotoelectrochemical surface-enhanced Raman spectroscopy (SERS) and ambient-pressure X-ray photoelectron spectroscopy. At the intermediate stage of water oxidation, a characteristic blue shift of the vibration of Au-OH species in laser-power-density-dependent measurements was assigned to the light-induced production of Au-OH+ in water oxidation. The photothermal effect was excluded according to the vibrational frequencies of Au-OH species as the temperature was increased in a variable-temperature SERS measurement. Density functional theory calculations evidenced that the frequency blue shift is from the positively charged Au-OH species. The photocurrent-dependent frequency blue shift indicated that Au-OH+ is the key electron-transfer intermediate in water oxidation by decoupled electron and proton transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call