Abstract
This study reports a comparison of the kinetics of electrochemical (EC) versus photoelectrochemical (PEC) water oxidation on bismuth vanadate (BiVO4) photoanodes. Plots of current density versus surface hole density, determined from operando optical absorption analyses under EC and PEC conditions, are found to be indistinguishable. We thus conclude that EC water oxidation is driven by the Zener effect tunneling electrons from the valence to conduction band under strong bias, with the kinetics of both EC and PEC water oxidation being determined by the density of accumulated surface valence band holes. We further demonstrate that our combined optical absorption/current density analyses enable an operando quantification of the BiVO4 photovoltage as a function of light intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.