Abstract

Remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS) is challenging due to the strength of the carbon-fluorine bond and the need to achieve nanogram per liter drinking water targets. Previous studies have shown that ion exchange resins can serve as effective sorbents for the removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in conventional water treatment systems. The objectives of this study were to evaluate the in situ delivery and PFAS sorption capacity of a polymer-stabilized ion exchange resin (S-IXR) consisting of Amberlite® IRA910 beads and Pluronic® F-127 in a quartz sand. At concentrations below 100 µg/L, individual and mixed PFAS adsorption on resin beads exhibited linear isotherms with no apparent competitive effects. However, at concentrations up to 100 mg/L, PFAS adsorption isotherms were non-linear and a mixture of six PFAS exhibited strong competitive effects. In columns packed with 40–50 mesh Ottawa sand, injection of the S-IXR suspension created a uniform sorptive zone that increased PFOA or PFOS retention by more than five orders-of-magnitude compared to untreated control columns. Multi-solute column studies revealed earlier breakthrough of shorter-chain length PFAS, which was consistent with the mixed PFAS adsorption data. These findings indicate that injectable ion exchange resins could provide an effective in situ remediation strategy for PFAS-impacted groundwater plumes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.