Abstract

Redox flow batteries (RFBs) have been studied over the past several decades as a promising candidate for stationary energy storage applications. It is therefore important to understand the reliability of RFBs and the mechanisms that cause degradation with time. Contributions from individual electrodes are difficult to separate especially for long-term cycle testing due to the lack of a stable reference electrode. In our work, the reliability and degradation mechanisms of an all-vanadium RFB were investigated by a stable reference electrode based on the dynamic hydrogen electrode (DHE). The newly developed DHE reference electrode demonstrated high accuracy and long-term stability that enables in situ monitoring of individual electrode signals over hundreds of cycles in a vanadium RFB. This approach enables the full cell degradation to be separated into contributions from the cathode and anode. The cathode and anode were found to play quite different roles in the increase in overpotential of the vanadium RFB during long-term cycling. The anode reaction limited both the charge and discharge capacity over 100 cycles. The negative side also appeared to be the rate limiting factor throughout cycling as determined by EIS measurement. The cathode contributed to the performance degradation as cycling exceeded 50 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.