Abstract
Oral administration of therapeutic peptides/proteins (TPPs) is confronted with multiple gastrointestinal (GI) barriers such as mucus and intestinal epithelium, and the first-pass metabolism in the liver is also responsible for low bioavailability. In situ rearranged multifunctional lipid nanoparticles (LNs) were developed to overcome these obstacles via synergistic potentiation for oral insulin delivery. After the reverse micelles of insulin (RMI) containing functional components were gavaged, LNs formed in situ under the hydration effect of GI fluid. The nearly electroneutral surface generated by the rearrangement of sodium deoxycholate (SDC) and chitosan (CS) on the reverse micelle core facilitated LNs (RMI@SDC@SB12-CS) to overcome mucus barrier and the sulfobetaine 12 (SB12) modification further promoted epithelial uptake of LNs. Subsequently, chylomicron-like particles formed by the lipid core in the intestinal epithelium were easily transported to the lymphatic circulation and then into the systemic circulation, thus avoiding hepatic first-pass metabolism. Eventually, RMI@SDC@SB12-CS achieved a high pharmacological bioavailability of 13.7% in diabetic rats. In conclusion, this study provides a versatile platform for enhanced oral insulin delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.