Abstract

In situ electrical transport measurements on individual bent ZnO nanowires have been performed inside a high-resolution transmission electron microscope, where the crystal structures of ZnO nanowires were simultaneously imaged. A series of consecutively recorded current-voltage (I-V) curves along with an increase in nanowire bending show the striking effect of bending on their electrical behavior. The bending-induced changes of resistivity, electron concentration, and carrier mobility of ZnO nanowires have been retrieved based on the experimental I-V data, which suggests the applications of ZnO nanowires as nanoelectromechanical sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.