Abstract

Recently, all-inorganic perovskites as photoluminescent materials have attracted significant attention in the field of light-emitting diodes. However, their instability towards UV light, high temperature, and water has impeded widespread commercial applications. We propose a facile strategy for synthesizing CSSM-CPB by encapsulating perovskite CsPbBr3 (CPB) into the channels of core-shell silica microspheres (CSSM). Subsequently, the channels of CSSM-CPB were sealed with octadecyltrichlorosilane (ODS). Consequently, the stability of CSSM-CPB to UV light, high temperature, and water significantly improved. Notably, CSSM-CPB retains a high fluorescence emission intensity even after immersion in water for 30 days. Furthermore, the photoluminescence quantum yield of CSSM-CPB reaches 68%, compared to just 30% for discrete CPB. A CSSM-CPB-WLED was also developed, exhibiting a color temperature (Tc) of 5869 K, Commission Internationale de l′Éclairage (CIE) color coordinates of (0.34, 0.34), a luminous efficiency of 86.31 lm W−1, and a color gamut overlap with the NTSC space of approximately 121.1%. These results indicate a significant enhancement over CPB-WLED, suggesting that the stability of CPB can be improved through silica encapsulation and hydrophobic material sealing. This approach has potential for commercial application in display devices requiring high stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.