Abstract

Superficially porous core-shell silica microspheres (CSSMs) have been a great success for the fast separation of small molecules and proteins in recent years. In this paper, the CSSMs were synthesized by an improved polymerization-induced colloid aggregation (PICA) method using urea-formaldehyde polymers as the templates. The agglomeration of the functionalized silica core was avoided by the surface modification through reflux with ureidopropyltrimethoxysilane in the neutral ethanol solution at 80°C, and the secondary nucleation of the silica nanoparticles during the preparation process could also be inhibited via the optimization of the reaction conditions, such as pH, temperature, colloidal silica sol concentration and the reaction time. The controllable shell thickness and pore size of the synthesized monodisperse CSSMs were successfully obtained by adjusting the weight ratio of silica core/colloidal silica sol and the particle size of colloidal silica sol, respectively. The C18-modified CSSMs with different pore sizes were used to separate small solutes and proteins. The higher efficient separation and relatively low back pressure of the synthesized core-shell column demonstrate that the CSSMs have a great potential application for fast HPLC

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.