Abstract
Polydimethylsiloxane (PDMS) has emerged as a promising candidate for the dielectric layer in implantable sensors due to its exceptional biocompatibility, stability, and flexibility. This study introduces an innovative approach to produce graphene-reinforced PDMS (Gr-PDMS), where graphite powders are exfoliated into mono- and few-layer graphene sheets within the polymer solution, concurrently forming cross-linkages with PDMS. This method yields a uniformly distributed graphene within the polymer matrix with improved interfaces between graphene and PDMS, significantly reducing the percolation threshold of graphene dispersed in PDMS from 10% to 5%. As-synthesized Gr-PDMS exhibits improved mechanical and electrical properties, tested for potential use in capacitive pressure sensors. The results demonstrate an impressive pressure sensitivity up to 0.0273 kpa-1, 45 times higher than that of pristine PDMS and 2.5 times higher than the reported literature value. The Gr-PDMS showcases excellent pressure sensing ability and stability, fulfilling the requirements for implantable intracranial pressure (ICP) sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.