Abstract

Joining shape-memory alloys (SMA) to other materials is strongly required in order to enlarge their fields of application. Fusion welding induces strong compositional and microstructural changes that significantly affect the shape-memory effect and the superelastic behavior of these alloys. The exothermic and in some cases self-propagating character of some nano-multilayer reactions is explored in this study as an alternative for joining SMA. To follow these very fast reactions, high brilliance sources, such as synchrotron radiation, are required. In situ high-resolution x-ray diffraction data, giving the phase evolution sequence with temperature of the Ni/Ti multilayer thin films under study, are presented. A correlation between the multilayer design and the tendency for the sequence of phase formation is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.