Abstract
An in situ surface passivation of InP(100) using H2S during metal organic vapor phase epitaxy has been characterized by x-ray photoemission spectroscopy and photoluminescence. X-ray photoelectron spectra indicate that the H2S-treated InP at 300 °C is free of P and In oxides even after exposure to air. The enhancement of photoluminescence intensity confirms that H2S passivation of an InP epilayer can reduce the surface defects. It is shown that H2S treatment results in In–S bonds, which dominate the sulfur-passivated InP surface, effectively suppressing interface oxidation during the subsequent ultrathin Al2O3 dielectric film growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.