Abstract
Vapor condensation is widely used in industrial systems due to its effective heat and mass transfer when compared to single-phase thermal transport. In particular, dropwise condensation can significantly enhance heat transfer performance due to rapid droplet shedding and promotion of additional nucleation sites for vapor condensation. Recently, lubricant-infused surfaces (LISs) composed of superhydrophobic structures infused with a low surface tension lubricant have been shown to effectively promote dropwise condensation of a variety of fluids by forming chemically and topographically homogeneous low-surface-energy surfaces. However, depletion of the infused lubricant remains a critical limitation to developing durable LISs which can sustain prolonged dropwise condensation. Moreover, the observed degradation is difficult to detect especially during active condensation on the surface. Here, we introduce an optical measurement technique to quantify in situ and in operando lubricant drainage from LISs. The optical method allows for non-invasive, instantaneous, and accurate prediction of the lifespan of LISs. The method implements the analysis of sample transient transparency, with depletion leading to exposure of the structure and increased light scattering. Our work demonstrates the logarithmic relation between the amount of the lubricant remaining in the LIS and the optical transmittance of the LIS, validating our unique technique for estimating the durability of LISs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.