Abstract

We report the in situ optical measurements of the rapid Li intercalation and deintercalation dynamics in 2-dimensional (2D) layered transition metal dichalcogenide (TMD) with a nanoscale lateral dimension using thin films fabricated with size-controlled colloidal TiS2 nanodiscs. The films exhibiting high optical homogeneity, where the interband absorption changes near-linearly to the amount of intercalated Li, enabled facile optical probing of the intercalation dynamics overcoming the shortcomings of amperometry susceptible to complications from non-Faradaic processes. The time scale of Li intercalation and deintercalation was on the order of seconds in the nanodiscs of ∼100 nm lateral dimension, indicating sufficiently rapid dynamic control of the intercalation-induced material properties with a reduced lateral dimension. The change in the rate and reversibility of the dynamics during the multiple intercalation/deintercalation cycles was also measured, providing a unique window to observe the effect of potential structural changes on the intercalation and deintercalation dynamics in 2D layered TMD structures with a nanoscale lateral dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.