Abstract

In-situ observations of a/g phase transformation were made to study the effect of grain boundary microstructure of the generation of a new phase and the migration of a/g interphase boundaries in an Iron-4.2at.%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites, while triple junctions with low angle and low S coincidence boundaries did not play a role as preferential sites. The migration of a/g interphase boundaries during heating across the transformation temperature showed the two stage behaviour characterized first by a stage with a migration velocity of 0.33-0.75µm/s and secondly a stage with 3.7-7.6 µm/s. It was also found that abnormal grain growth and a high density of S3 coincidence boundaries could occur in the a/bcc phase after cycling of a/g/ a phase transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.