Abstract

Domain wall motion in Mn–Zn and Ni–Zn ferrites with applied magnetic fields is investigated by in situ observations with Lorentz microscopy and electron holography. It is found that both Mn–Zn and Ni–Zn ferrites have a mean grain size of approximately 10 μm and several pores with sizes ranging from 0.2 to 1.1 μm. In situ observations by Lorentz microscopy with an applied magnetic field reveals that in Mn–Zn ferrite, the domain walls move easily across the grain boundary, while in Ni–Zn ferrite, the domain walls move along the grain boundary but are pinned at the grain boundary and pores. From in situ observations of Ni–Zn ferrite by electron holography, it is clarified that domain wall pinning at the grain boundary retards a sensitive increase in magnetic flux parallel to the applied field direction, which is considered to result in high hysteresis loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call