Abstract

The effects of Y on the solidification process of 7Mo super austenitic stainless steel (7MoSASS) under low cooling rate conditions (10 °C/min) were investigated using high-temperature confocal laser scanning microscopy (HT-CLSM). The in situ observation results indicate that Y samples promote an increase in austenite nucleation density. After 10 s of nucleation, the nucleation density increased by 149.53/mm2 for the Y sample. Furthermore, variance analysis indicated that Y addition improved the uniformity of the 7MoSASS solidification microstructure under low cooling rate conditions. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory results showed that when the solid phase ratio was 0.5, the nucleation mode of the Y sample transitioned from saturation site nucleation to saturation site nucleation + Avrami nucleation. YAlO3 has a low lattice disregistry value with austenite, making it a suitable heterogeneous nucleation core for promoting the early nucleation of austenite. During the late stages of solidification, Y accumulates in the residual liquid phase, providing a greater degree of compositional undercooling. SEM-EDS analysis showed that Y contributed to the refinement of the 7MoSASS solidification microstructure, with the proportion of precipitated phases decreasing by approximately 7.5%. Cr and Mo were the main elements exhibiting positive segregation in 7MoSASS, and the Cr segregation ratio increased in the Y sample, while the Mo segregation ratio decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call