Abstract
In situ X-ray diffraction observation was done for neutron-irradiated and un-irradiated highly oriented pyrolytic graphite (HOPG) samples with synchrotron radiation to clarify the effect of irradiation-induced defects on the transformation to diamond under high-pressure and high-temperature treatment. At 16 GPa, no remarkable change appeared for the irradiated HOPG with increasing the temperature up to 800 °C. At temperatures of 1200 °C and 1400 °C, hexagonal diamond was formed, along with the formation of cubic diamond. This is probably due to annealing of the irradiation defects that led to partial restoration of the structure to the original HOPG and then enables the formation. On the other hand, in un-irradiated HOPG, hexagonal diamond was formed at 400 °C, which changed to cubic diamond at 1200 °C or higher. We guess that irradiation defects promote the nucleation of cubic diamond in the irradiated sample and then contribute to the formation of isotropic polycrystalline diamond or amorphous diamond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.