Abstract
The nano-sized zero valent iron assisted biochar from hazelnut shell (nZVI@biochar) was prepared and assessed for the feasibility as the binding agent in diffusive gradients in thin-films (DGT) technique. The 1.5% agarose solution containing the optimal nZVI@biochar dose of 15 g L−1 was used to prepare the nZVI@biochar binding gel which owned a high capacity (1010 ± 50 μg disc−1) and a rapid uptake within 30 min. The elution efficiency of phenol from the loaded binding gel was up to 99.3% using the mixture of 1% hydroxylamine hydrochloride and 0.05 mol L−1 HCl. The phenol uptake of nZVI@biochar-DGT increased linearly with the increase of deployment time (R2 = 0.9938) and was in accord with the theoretical values from DGT equation, while there was no notable interference of the sample matrixes on the phenol uptake of nZVI@biochar-DGT in the spiked freshwaters. The good performance of nZVI@biochar-DGT was found under a range of pH (4.1–10.2), ionic strength (as pNaNO3) (0.155–4), and dissolved organic matter up to 20 mg L−1. In field, the monitoring of nZVI@biochar-DGT was more representative than the results from the grab-sampling with better precision and lower sampling frequency, which can provide reliable information, reduce the cost of human resources, and improve efficiency. These illustrate that the nZVI@biochar is more suitable as the binding agent of DGT for uptake of phenol and nZVI@biochar-DGT is an effective tool to monitor in-situ phenol in waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.