Abstract

Stresses due to electric fields in thermal and anodic silica thin layers can impact the devices using these films as dielectrics. Accurately quantifying the internal stress as a function of the electric field is thus of technological importance. In this work, electrostrictive stresses are monitored during cyclic polarization of silica thin films on silicon and during the growth of anodic silica. These are obtained by combining curvature and ellipsometry measurements in situ. In silica films grown by thermal oxidation of silicon, the electric field can generate either tensile or compressive stresses depending on its magnitude and on the silica polarization history. The electromechanical coupling in thermal silica is assumed to be controlled by a reversible change of the dipole organization. For anodic silica films, the stress generated by the electric field is tensile and varies linearly with the square of the electric field above 0.26 V2/nm2 under both cyclic polarization and oxidation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call