Abstract

There are growing concerns about the effects of accidental impact damage on the structural integrity of aerospace composites and about the possible growth of the damage due to in-service fatigue. There has been some success in the use of established methods (ultrasonic C-scan, thermography, X-rays) to monitor damage development during fatigue experiments by interrupting a test and removing the specimen for damage inspection but this stop-and-restart test procedure is far from satisfactory. Real-time damage monitoring in composite materials during fatigue has now become possible by the emergence of a new ultrasonic imaging technology, acoustography. The successful integration of acoustography and a servo-hydraulic fatigue test machine has resulted in a new measurement system which can be used for the in situ monitoring in real time of damage growth in composite specimens during long-term fatigue tests. Results are presented which show damage-area growth during fatigue cycling under high compressive loads. After an initial small enlargement (stage 1), damage grows at a constant rate (stage 2) until the third stage is reached when there is further growth at an increasing rate to final failure. However, a ‘fatigue limit’ has also been observed. At stresses below this fatigue limit, a zero damage-growth régime has been found in studies of >10 6 fatigue cycles. The results obtained have important implications for the understanding of the effects of damage on fatigue life and for the design of ‘safe’ damage-tolerant structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call