Abstract

Flux formulations are specified to target chemical and physico-chemical parameters. Chemical parameters set flux element transfer behaviours and weld metal oxygen contents. Physico-chemical parameters such as slag viscosity, surface tension and melting range are targeted to ensure an acceptable weld bead profile and surface appearance. Slag detachability is an important physico-chemical property required to ensure high welding productivity, smooth weld bead surface and no slag entrapment. Here, bead-on-plate welding tests were made with and without metal powder additions, including aluminium powder as a de-oxidiser. Difficult slag detachability was observed in weld runs made with metal powder additions. Mineralogy of the post-weld slags, and thermochemical calculations, show that the flux was modified due to the aluminothermic reduction of MnO and SiO2 from the slag to form alumina. Increased quantities of spinel phase were identified in the post-weld slag samples, at the weld pool–slag interface. The combined effect of increased slag viscosity, from increased spinel in the slag, and lowered weld pool solidus temperature, resulted in the formation of a rough bead surface morphology, which, in turn, caused mechanical fixation of the slag to the weld bead. Flux modification to higher CaF2 content should ensure that higher quantities of spinel phase can be tolerated in the slag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call