Abstract

The debonding of pressure sensitive adhesives (PSA) is a classical example of the difficult and unsolved issue of fracture in soft viscoelastic confined materials. The presence of a complex debonding region where the adhesive undergoes cavitation and the very large strain of a spontaneously formed fibrillar network has defied many modeling attempts over the past 70 years. We present here a novel technique to provide an accurate measurement of the local large strain response of the fibrillar debonding region during the steady-state peeling of a well known commercial adhesive over a wide range of peeling velocity and angle. The technique is based on high resolution imaging of the debonding region during peeling and is coupled to a cohesive zone modeling of the adhesive interaction between the flexible tape backing and the rigid substrate. The resulting database provides a strong ground for validating and further developing models (Villey et al. in Soft Matter 11:3480–3491, 2015) aiming to capture the effects of both geometry and non-linear adhesive rheology on the exceptional adherence energy of PSAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call