Abstract
Local tissue scale mechanical properties are essential for understanding cell fate and function; however, few methods to measure stiffness at this length scale exist, and applications in 3D tissues can present further challenges. To address this need, microgel-based sensors fabricated out of the thermally responsive hydrogel poly(N-isopropylacrylamide) were developed allowing internal architectures of tissues to be mapped by optically measuring microgel response when actuated in a matrix. These robust probes are widely applicable for in vitro and in vivo studies of tissue mechanics providing tissues can be fluorescently imaged. Here we describe the fabrication of these thermally responsive hydrogel sensors, calibration of the microgels using phantom tissues, and image processing techniques used to make the measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.