Abstract

The expression of isoforms of nitric oxide synthase (NOS), enzymes responsible for NO production, and the synthesis of nitric oxide (NO) in rat retinal ganglion cells (RGCs) during synaptogenesis for various phases of the pre- and postnatal developmental periods were investigated. The retinas from prenatal, lactating, young, and adult rats were fixed in paraformaldehyde. The cryosections or paraformaldehyde-fixed ganglion cells purified from rat pups were immunostained for constitutive isoforms of NOS (n and eNOS) and observed with a confocal laser scanning microscope. Synthesis of NO in the RGCs was achieved by in vitro stimulation with glutamate. The intracellular NO levels were measured in real time using diaminofluorescein-2 diacetate, a fluorescence indicator of NO. Immunohistochemical analysis revealed nNOS and eNOS expressed in retinal ganglion cells during the first 2 postnatal weeks. Cultured RGCs also expressed nNOS and eNOS in vitro. Intracellular NO levels in cultured RGCs showed spontaneous fluctuation during a 20-min observation. The presence of both a non-specific NOS inhibitor, l-NAME, and a specific nNOS inhibitor, 7-NI, significantly inhibited ( P<0.001) the increase of intracellular NO 6 and 8 min after the introduction of l-arginine and glutamate to the medium. This study revealed that all constitutive NOS isoforms are expressed in RGCs and demonstrated that NO is produced by nNOS mainly through stimulation by glutamate in cultured RGCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.