Abstract

The coexistence of superconductivity and ferromagnetism is an intrinsically interesting research focus in condensed matter physics, but the study is limited by low superconducting (Tc) and magnetic (Tm) transition temperatures in related materials. Here, we used a scanning superconducting quantum interference device to image the in situ diamagnetic and ferromagnetic responses of RbEuFe4As4 with high Tc and Tm. We observed significant suppression of the superfluid density in the vicinity of the magnetic phase transition, signifying fluctuation-enhanced magnetic scatterings between Eu spins and Fe 3d conduction electrons. Intriguingly, we observed multiple ferromagnetic domains that should be absent in an ideal magnetic helical phase. The formation of these domains demonstrates a weak c-axis ferromagnetic component probably arising from the Eu spin-canting effect, indicative of possible superconductivity-driven domain Meissner and domain vortex-antivortex phases, as revealed in EuFe2(As0.79P0.21)2. Our observations highlight that RbEuFe4As4 is a unique system that includes multiple interplay channels between superconductivity and ferromagnetism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call