Abstract
AbstractConducting polypyrrole (PPy)‐montmorillonite (MMT) clay nanocomposites have been synthesized by the in situ intercalative polymerization method. The PPy‐MMT nanocomposites are characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. XRD patterns show that after polymerization by the in situ intercalative method with ammonium persulfate and 1 M HCl, an increase in the basal spacing from 1.2 to 1.9 nm was observed, signifying that PPy is synthesized between the interlayer spaces of MMT. TEM and SEM micrographs suggest that the coexistence of intercalated MMT layers with the PPy macromolecules. FTIR reveals that there might be possible interfacial interactions present between the MMT clay and PPy matrix. The study also shows that the introduction of MMT clay results in thermal stability improvement of the PPy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2279–2285, 2008
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have